Annual review of the ARPA E ALPHA program

MEMS Based Ion Beam Drivers for Magnetized Target Fusion

MEMS Based Ion Beam Drivers for Magnetized Target Fusion

LBNL:

Peter Seidl, Qing Ji, Arun Persaud, Will Waldron

 Accelerator physics, Ion sources and beam transport, RF, ... http://atap.lbl.gov/

Cornell:

Amit Lal (Co-PI), Serhan Ardanuc, Joseph Miller, Vinaya Kumar

 MEMS fabrication, Chip-scale particle accelerators, ... http://www.sonicmems.ece.cornell.edu/

MEMS Based Ion Beam Drivers for Magnetized Target Fusion - Summary

What are you trying to do?

• Our goal is to proof the concept of MEMS based ion accelerators that can be scaled to very high beam energy (>1 MJ in ~1 μ s) for compression of magnetized fusion targets at low cost (<\$0.05/MJ)

Why is this important?

 Ion beams are very attractive drivers for MTF, but delivering the required beam energy at low enough cost is very challenging

Why now?

 MEMS technology and solid state RF have matured significantly and we see an exciting opportunity to implement multi-beamlet accelerator concepts from the 1980s now with low cost fabrication and scalability

Why is this hard?

- ion beam transport in arrays of sub-mm beamlets is challenging due to beam emittance and space charge forces
- alignment of beamlets is critical for efficient transport
- ion acceleration in RF driven high voltage gaps has to be balanced with breakdown limits
- ...

Our motivation is to develop low cost, scalable ion beam drivers for fusion

Ion beam drivers for fusion

- driver energy = E_{kin} * I_{peak} * pulse length \rightarrow 1 to 10 MJ
- Heavy ion fusion (HIF): ~GeV, 0.1 MA, in ns
- \circ Magnetized target fusion (MTF): ~0.1–1 MeV, MA, in μ s

→ we need efficient and low cost drivers (<\$0.05/MJ)

Ion beam driver technology for MTF

- High Current Experiment (~12 m)
- injection, matching and transport at HIF driver scale
- 1 MeV, 0.2 A, 5 μs, ~12 m
- 0.4 m cross section
- M. Kireeff-Covo, et al., PRL (2006)

- pulsed induction linac (12 m)
- 1 MeV, 2 ns, mm, ≥0.8 A peak
- 200x drift compression
- P. S. Seidl et al. NIM A (2015)
- Radio frequency quadrupole (RFQ)
- 2 MeV, 0.01 A, cw
- 4 m long, 0.4 m cross section
 - Z. Zouhli, D. Li et al. IPAC2014

how can we scale ion beam drivers to >1 MJ in μs pulses at low enough cost for MTF ?

MEQALAC concept from 1980s

Multiple-Electrostatic-Quadrupole-Array Linear Accelerator

1980 Dimensions: ~ 1 cm beam aperture, ESQ length : ~few cm

- Thomae et al., Mat. Science & Eng., B2, 231 (1989)
- Al Maschke et al., early 1980s

Last year we were talking about arrays of electrostatic quadrupoles that could be produced with unit cells of the order of 1 mm

Prototype

Bottom View

Top View

We have now demonstrated the building blocks of a MEMS based multi-beamlet accelerator

Single-Quad focus/defocus experiment setup

We have demonstrated transport and focusing by ESQs in a 3x3 beamlet structure fabricated on PC boards

Two-Quad beam transport experiment setup

Results with two ESQs in series show refocusing

Quad1: $V_x = 0V$, $V_v = 0V$

Quad2: $V_x=0V$, $V_v=0V$

Quad1: $V_x = -200V$, $V_y = +200V$

Quad2: $V_x = +150V$, $V_y = -150V$

We have demonstrated RF acceleration in a 3x3 beamlet structure fabricated on PC boards

10.0

10.5

11.0

ret. Voltage[kV]

12.0

11.5

Platforms for focusing

- ESQ options
 - PCB
 - Glass/metal
 - Silicon
 - 3D printed

- Evaluation metrics
 - Package density
 - Robustness (handling)
 - Beam transmission
 - Scalability
 - Cost

Platforms for acceleration

- Acceleration options
 - Off board RF
 - HV pulsers based on MOSFETS
 - RF driven co-planar waveguides

Evaluation metrics

- Gradient per gap
- Duty cycle
- Scalability
- Compactness
- Cost

MEMS Based Ion Beams for Fusion

A. Lal, S. Ardanuc, J. Miller, K.B. Vinayakumar

- We have demonstrated RF acceleration and ESQ focusing in a 3x3 beamlet accelerator formed from a stack of printed circuit boards
- In year 2 we will demonstrate an integrated accelerator with a series of stages
- We see intriguing early applications: mass spectrometry, neutron-generators, surface treatment, ...

